https://www.researchgate.net/profile/Gang-Sun-12
1. Sun, G.; Nie, D.; Zhu, Q.; Gao, L.; Chang, Y.; Liu, H.; Yang, J.; Ren, Y.; Shao, Y.; Ishii, H.; Sui, X.*; Wang, P.; Wang*, H.; Wang, Z*. Sn-Mediated Local Atomic Ordering Enhances Reversible Anionic Redox Activity in Cation-Disordered Li1.3Mn0.4Nb0.3O2 Cathodes. Adv. Energy Mater. 2025, 2500217. DOI: https://doi.org/10.1002/aenm.202500217.
2. Wang, P.; Zhou, H.; Zhong, Y.; Sui, X.*; Sun, G.*; Wang, Z*. Dendrite-Free Zn Metal Anodes with Boosted Stability Achieved by Four-in-One Functional Additive in Aqueous Rechargeable Zinc Batteries. Adv. Energy Mater. 2024, 14(33), 2401540. DOI: https://doi.org/10.1002/aenm.202401540.
3. Nie, D.#; Sun, G.#(共同第一); Jiang, Y.; Yang, Y.; Wang, P.*; Sui, X.*; Wang, Z*. Exploit Li2Mno3 Activity by Two Phase Coexistence at Atomic Level Towards High Performance Mn-Based Co-Free Li-Rich Cathodes. Energy Storage Mater. 2024, 67, 103335. DOI: 10.1016/j.ensm.2024.103335.
4. Li, Y.; Ding, F.*; Shao, Y.; Wang, H.; Guo, X.; Liu, C.; Sui, X.; Sun, G.*; Zhou, J.*; Wang, Z*. Solvation Structure and Derived Interphase Tuning for High‐Voltage Ni‐Rich Lithium Metal Batteries with High Safety Using Gem‐Difluorinated Ionic Liquid Based Dual‐Salt Electrolytes. Angewandte Chemie International Edition. 2024, 63(8). DOI: 10.1002/anie.202317148.
5. Bai, X.; Zhang, L.; Zhang, D.; Li, K.; Li, T.; Ren, Y.; He, H.; Xie, B.*; Sun, G.*; Xu, J.*; Yin, X*. Crystal Water-Capturing and Film-Forming Bifunctional Electrolyte Additive for Stabilizing Sodium Iron Hexacyanoferrate Cathode for Na-Ion Batteries. Chem. Eng. J. 2024, 497, 10. DOI: 10.1016/j.cej.2024.154902 (accessed 2024/1/1).
6. Zhu, Q.; Sun, G.*; Wang, P.; Sui, X.; Liu, C.; Wang, J.*; Zhou*, J.; Wang, Z*. Imaging the Space-Resolved Chemical Heterogeneity of Degraded Graphite Anode through Scanning Transmission X-Ray Microscope. J. Power Sources. 2024, 591, 233882. DOI: 10.1016/j.jpowsour.2023.233882.
7. Yang, Y.; Zhu, Q.; Yang, J.; Liu, H.; Ren, Y.; Sui, X.*; Wang, P.*; Sun, G.*; Wang, Z*. Surface Miscible Structure Modulation of Li‐Rich Cathodes by Dual Gas Surface Treatment for Super High‐Temperature Electrochemical Performance. Adv. Funct. Mater. 2023, 2304979.
8. Sun, G.#; Yu, F.#; Lu, M.; Zhu, Q.; Jiang, Y.; Mao, Y.; McLeod, J. A.; Maley, J.; Wang, J.*; Zhou, J.*; Wang, Z.* Surface Chemical Heterogeneous Distribution in Over-Lithiated Li1+Xcoo2 Electrodes. Nat. Commun. 2022, 13(1), 6464. DOI: 10.1038/s41467-022-34161-4.
9. Yang, Y.; Sun, G.*; Zhu, Q.; Jiang, Y.; Ke, W.; Wang, P.; Zhao, Y.; Zhang, W.; Wang, Z*. An Artificially Tailored Functional Layer On Li-Rich Layer Cathodes Enables a Stable High-Temperature Interphase for Li-Ion Batteries. J. Mater. Chem. A. 2022, 10(45), 24018-24029. DOI: 10.1039/D2TA07316A.
10. Sun, G.#; Yu, F. D.#; Zhao, C.; Yu, R.; Farnum, S.; Shao, G.*; Sun, X.*; Wang, Z. B.* Decoupling the Voltage Hysteresis of Li‐Rich Cathodes: Electrochemical Monitoring, Modulation Anionic Redox Chemistry and Theoretical Verifying. Adv. Funct. Mater. 2021, 31(1), 2002643. DOI: 10.1002/adfm.202002643.
11. Sun, G.; Zhao, C.; Yu, F.; Yu, R.; Wang, J.; Zhou, J.; Shao, G.*; Sun, X.*; Wang, Z.* In-Situ Surface Chemical and Structural Self-Reconstruction Strategy Enables High Performance of Li-Rich Cathode. Nano Energy. 2021, 79, 105459. DOI: 10.1016/j.nanoen.2020.105459.
12. Sun, T.#; Sun, G.#; Yu, F.; Mao, Y.; Tai, R.; Zhang, X.; Shao, G.; Wang, Z.*; Wang, J.*; Zhou, J.* Soft X-Ray Ptychography Chemical Imaging of Degradation in a Composite Surface-Reconstructed Li-Rich Cathode. Acs Nano. 2021, 15(1), 1475-1485. DOI: 10.1021/acsnano.0c08891.
13. Sun, G.#; Yu, F.#; Que, L.; Deng, L.; Wang, M.; Jiang, Y.; Shao, G.*; Wang, Z.* Local Electronic Structure Modulation Enhances Operating Voltage in Li-Rich Cathodes. Nano Energy. 2019, 66, 104102. DOI: 10.1016/j.nanoen.2019.104102.
14. Sun, G.; Yin, X.; Yang, W.; Zhang, J.; Du, Q.; Ma, Z.; Shao, G.*; Wang, Z.* Synergistic Effects of Ion Doping and Surface-Modifying for Lithium Transition-Metal Oxide: Synthesis and Characterization of La2O3-Modified Lini1/3Co1/3Mn1/3O2. Electrochim. Acta. 2018, 272, 11-21. DOI: 10.1016/j.electacta.2018.03.175.
15. Sun, G.#; Jia, C.; Zhang, J.; Yang, W.; Ma, Z.; Shao, G.*; Qin, X.* Effectively Enhance High Voltage Stability of Lini1/3Co1/3Mn1/3O2 Cathode Material with Excellent Energy Density Via La2O3 Surface Modified. Ionics. 2019, 25(5), 2007-2016. DOI: 10.1007/s11581-018-2621-4 (accessed 2019/1/1).
16. Sun, G.#; Jia, C.; Zhang, J.; Yang, W.; Ma, Z.; Shao, G.*; Qin, X*. Effectively Enhance High Voltage Stability of Lini1/3Co1/3Mn1/3O2 Cathode Material with Excellent Energy Density Via La2O3 Surface Modified. Ionics. 2018. DOI: 10.1007/s11581-018-2621-4 (accessed 2018/1/1).
17. Gang, S.; Chenxiao, J.; Shuanlong, D.; Jianning, Z.; Qinghua, D. A. X. Q.* The Effect of Thermal Treatment Temperature and Duration On Electrochemistry Performance of Lini1/3Co1/3Mn1/3O2 Cathode Materials for Lithium-Ion Batteries. Current Nanoscience. 2018, 14(5), 440-447. DOI: http://dx.doi.org.proxy1.lib.uwo.ca/10.2174/1573413714666180320145227 (accessed 2018/1/1).
18. Sun, G.; Yin, X.; Yang, W.; Song, A.; Jia, C.; Yang, W.; Du Q; Ma, Z.; Shao, G.* The Effect of Cation Mixing Controlled by Thermal Treatment Duration On the Electrochemical Stability of Lithium Transition-Metal Oxides. Phys. Chem. Chem. Phys. 2017, 19(44), 29886-29894. DOI: 10.1039/c7cp05530g (accessed 2017 Nov 15).