[27] W. Li, Z. Chen, Y. Chen, L. Zhang, G. Liu, L. Yao*, High-entropy argyrodite-type sulfide electrolyte with high conductivity and electro-chemo-mechanical stability for fast-charging all-solid-state batteries. Advanced Functional Materials, 2024, Accepted. (IF= 19.0)
[26] Y. Zhang, J. Zhang, Z. Ding, L. Zhang, L. Deng, L. Yao*, H. Y. Yang, Cationic defect-modulated Li-ion migration in high-voltage Li-metal batteries. ACS Nano, 2023, 17, 25519. https://pubs.acs.org/doi/epdf/10.1021/acsnano.3c09415 (IF= 17.1)
[25] Y. Zhang#, L. Zeng#, Z. Ding, W. Wu, L. Deng, L. Yao*, Stable electrode/electrolyte interfaces regulated by dual-salt and localized high-concentration strategies for high-voltage lithium metal batteries. Chemical Communications, 2023, 59, 12593. https://pubs.rsc.org/en/content/articlelanding/2023/cc/d3cc02705h (IF= 4.9)
[24] W. Wu#, D. Ning#, J. Zhang, G. Liu, L. Zeng, H. Yao, M. Wang, L. Deng, L. Yao*, Ultralight lithiophilic three-dimensional lithium host for stable high-energy-density anode-free lithium metal batteries. Energy Storage Materials, 2023, 63, 102974. https://doi.org/10.1016/j.cej.2022.140509 (IF= 20.4)
[23] W. Li, Z. Chen, Y. Chen, W. Duan, G. Liu, Y. Lv, H. Yang, and L. Yao*, High-voltage superionic and humidity-tolerant Li2.5Sc0.5Zr0.5Cl6 conductor for lithium batteries via preferred orientation. Chemical Engineering Journal, 2023, 455, 140509. https://doi.org/10.1016/j.cej.2022.140509 (IF= 16.744)
[22] W. Wu#, M. Liu#, Y. Pei#, W. Li, W. Lin, Q. Huang, M. Wang, H. Yang, L. Deng, L. Yao*, and Z. Zheng*, Unprecedented superhigh-rate and ultrastable anode for high-power battery via cationic disordering. Advanced Energy Materials, 2022, 12, 2201130. https://doi.org/10.1002/aenm.202201130 (IF= 29.698)
[21] L. Yao*, J. Lin, Y. Chen, X. Li, D. Wang, H. Yang, L. Deng, and Z. Zheng, Supramolecular-mediated ball-in-ball porous carbonnanospheres for ultrafast energy storage. InfoMat, 2022, 4, e12278. http://doi.org/10.1002/inf2.12278 (IF= 25.405)
[20] L. Deng*, L. Qiu, R. Hu, L. Yao*, Z. Zheng, X. Ren, Y. Li, and C. He*, Restricted diffusion preparation of fully-exposed Fe single-atom catalyst on carbon nanospheres for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 305, 121058. https://doi.org/10.1016/j.apcatb.2021.121058 (IF= 24.319,ESI高被引/热点论文)
[19] N. Zheng, C. Liang, C. Wu, X. Zhang, W. Zhai, M. Liu, H. Wei, C. Zhang, L. Dong, Y. Yu, W. Liu, and L. Yao*, Circumferential Li metal deposition at high rates enabled by the synergistic effect of a lithiophilic and ionic conductive network. Journal of Materials Chemistry A, 2022, 10, 5391-5401. https://doi.org/10.1039/D1TA10257E (IF= 14.511)
[18] A. D. Mani, J. Li, Z. Wang, J. Zhou, H. Xiang, J. Zhao, L. Deng, H. Yang, and L. Yao*, Coupling of piezocatalysis and photocatalysis for efficient degradation of methylene blue by Bi0.9Gd0.07La0.03FeO3 nanotubes. Journal of Advanced Ceramics, 2022, 11, 1069-1081. https://doi.org/10.1007/s40145-022-0590-6 (IF= 11.534)
[17] N. Zheng, C. Zhang, Y. Lv, L. Cheng, L. Yao*, and W. Liu*, Low-temperature synthesis of lithium lanthanum titanate/carbon nanowires for fast-charging Li-ion batteries. ACS Applied Materials & Interfaces, 2022, 14, 11330-11338. https://doi.org/10.1021/acsami.1c22665 (IF= 10.383)
[16] L. Yu, Z. Xiong, W. Zhang, D. Wang, H. Shi, C. Wang, X. Niu, C. Wang, L. Yao*, and X. Yan*, SnO2/SnS2 heterostructure@MXene framework as high performance anodes for hybrid lithium-ion capacitors. Electrochimica Acta, 2022, 409, 139981. https://doi.org/10.1016/j.electacta.2022.139981 (IF= 7.336)
[15] W. Li#, L. Deng#, H. Huang, J. Zhou, Y. Liao, L. Qiu, H. Yang, and L. Yao*, Janus photothermal membrane as an energy generator and a mass-transfer accelerator for high-efficiency solar-driven membrane distillation. ACS Applied Materials & Interfaces, 2021, 13, 26861-26869. https://doi.org/10.1021/acsami.1c01072 (IF= 10.383)
[14] H. Xiang, L. Yao*, J. Chen, A. Yang, H. Yang*, and L. Fang*, Microwave dielectric high-entropy ceramic Li(Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)GeO4 with stable temperature coefficient for low-temperature cofired ceramic technologies. Journal of Materials Science & Technology, 2021, 93, 28-32. https://doi.org/10.1016/j.jmst.2021.03.057 (IF= 10.319)
[13] W. Wu#, W. Lin#, H. Chen, K. Wei, Z. Li, H. Yang, M. Liu, H. Xiang, L. Deng, and L. Yao*, Iron oxide encapsulated titanium niobate nanotubes as a high-performance lithium-free anode for solid-state batteries. Journal of Materials Chemistry A, 2021, 9, 4880-4889. https://doi.org/10.1039/D0TA11030B (IF= 14.511)
[12] Y. Chen#, X. Li#, W. Liao, L. Qiu, H. Yang, L. Yao*, and L. Deng*, High efficiency nitrogen doping and single atom cobalt anchoring via supermolecules for oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 3398-3408. https://doi.org/10.1039/D0TA10276H (IF= 14.511)
[11] W. Wu#, Y. Wei#, H. Chen, K. Wei, Z. Li, J. He, L. Deng, L. Yao*, and H. Yang*, In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes. Journal of Materials Science & Technology, 2021, 75, 110-117. https://doi.org/10.1016/j.jmst.2020.10.039 (IF= 10.319)
[10] L. Yao*, J. Lin, H. Yang*, Q. Wu, D. Wang, X. Li, L. Deng, and Z. Zheng*, Two-dimensional hierarchically porous carbon nanosheets for flexible aqueous supercapacitors with high volumetric capacitance. Nanoscale, 2019, 11, 11086-11092. https://doi.org/10.1039/C9NR02476J (IF= 8.307)
[9] S. Chandrasekaran#, L. Yao#, L. Deng#, C. Bowen*, Y. Zhang*, S. Chen, Z. Lin, F. Peng, and P. Zhang*, Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48, 4178-4280. https://doi.org/10.1039/C8CS00664D (IF= 60.615,ESI高被引/热点论文)
[8] L. Yao#, J. Yang#, P. Zhang, and L. Deng*, In situ surface decoration of Fe3C/Fe3O4/C nanosheets: Towards bi-functional activated carbons with supercapacitance and efficient dye adsorption. Biosource Technology, 2018, 256, 208-215. https://doi.org/10.1016/j.biortech.2018.02.027 (IF= 11.889,ESI高被引论文)
[7] L. Yao#, Q. Wu#, P. Zhang*, J. Zhang, D. Wang, Y. Li, X. Ren, H. Mi, L. Deng*, and Z. Zheng*, Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Advanced Materials, 2018, 30, 1706054. https://doi.org/10.1002/adma.201706054 (IF= 32.086,ESI高被引/热点论文)
[6] L. Yao, W. Pan*, J. Luo*, X. Zhao, J. Cheng, and H. Nishijima, Stabilizing nanocrystalline oxide nanofibers at elevated temperatures by coating nanoscale surface amorphous films. Nano Letters, 2018, 18, 130-136. https://doi.org/10.1021/acs.nanolett.7b03651 (IF= 12.262)
[5] L. Yao, H. Nishijima, and W. Pan*, Contrary interfacial effects for textured and non-textured multilayer solid oxide electrolytes, RSC Advances, 2016, 6, 34390-34398. https://doi.org/10.1039/C6RA03139K (IF= 4.036)
[4] L. Yao, W. Liu, G. Ou, H. Nishijima, and W. Pan*, Fabrication of high performance oxygen sensors using multilayer oxides with high interfacial conductivity. Journal of Materials Chemistry A, 2016, 4, 11422-11429. https://doi.org/10.1039/C6TA01052K (IF= 14.511)
[3] L. Yao, G. Ou, H. Nishijima, and W. Pan*, Enhanced conductivity in (110)-textured ScSZ films tuned by amorphous alumina interlayer. Physical Chemistry Chemical Physics, 2015, 17, 23034-23040. https://doi.org/10.1039/C5CP03631C (IF= 3.945)
[2] L. Yao, G. Ou, W. Liu, X. Zhao, H. Nishijima, and W. Pan*, Phase stability and high conductivity of ScSZ nanofibers: effect of the crystallite size. Journal of Materials Chemistry A, 2015, 3, 10795-10800. https://doi.org/10.1039/C4TA06712F (IF= 14.511)
[1] L. Yao, W. Liu, G. Ou, H. Nishijima, and W. Pan*, Enhanced ionic conductivity in magnetron-sputtered Ce0.8Sm0.2O2-δ/Al2O3 multilayers. Electrochimica Acta, 2015, 158, 196-201. https://doi.org/10.1016/j.electacta.2015.01.138 (IF= 7.336)