张朝华职务: 职称:副教授 办公电话:0755-86713941 EMAIL:zhangch@szu.edu.cn |
张朝华(Chaohua Zhang), 1985年生,原籍湖南株洲,理学博士,副教授
联系方式: E-mail:zhangch@szu.edu.cn
地址:广东省深圳市南山区学苑大道深圳大学丽湖校区材料学院410
教育与研究经历:
1. 深圳大学材料学院, 副教授 (2017年6月-至今)
2. 深圳大学材料学院, 助理教授 (2017年3月-2017年5月)
3. 新加坡南洋理工大学, 博士后研究员,Research Fellow (2013年9月-2017年2月)
研究方向:碲化铋基热电材料的纳米结构化控制;有机无机复合热电材料;合作导师:熊启华 教授
4. 北京大学, 博士,物理化学专业 (2008年9月-2013年7月)
博士论文: “二维原子晶体的共偏析生长方法研究”;指导导师: 刘忠范 院士
5. 兰州大学,学士,物理学(理论物理)专业(2004年9月-2008年7月)
教学:
1. 材料物理基础(本科必修)
2. 材料综合设计实验(本科必修)
3. 专业英语(硕士必修)
4、5. 新能源材料与器件基础实验、创新实验
硕士研究生培养:
国家奖学金或腾讯奖学金获得者:
张春笑;谢煜程;陈斌;汪龙泉(日本读博);李培根(香港读博);冯亚梅;白光远;窦煜博;耿兴进
深大优秀毕业生:
陈斌;汪龙泉;李培根;冯亚梅;白光远;窦煜博;晏淦
深圳大学“百篇优秀硕士论文”:
耿兴进; 赖锵文
社会服务:
长期担任高品质学术期刊Nature, Adv. Mater., Adv. Energy Mater., Adv. Funct. Mater., Nano Energy, ACS Appl. Mater. Interfaces 等独立审稿人,以及承担各类项目评审工作。
研究兴趣:
1. 热电材料与器件
2. 低温热电输运
3. 有机无机复合热电材料与柔性热电器件
4. 二维材料及异质结的控制生长及物性研究
5. 热电输运的半经验和第一性原理计算
代表论著(一作及通讯):
2024年
[37] Y. Geng#, H. He#, R. Liang, Q. Lai, L. Hu, F. Liu, C. Zhang*, One‐Step‐Sintered GeTe‐Bi2Te3 Segmented Thermoelectric Legs with Robust Interface‐Connection Performance, Advanced Energy Materials 2024, 2402479. (IF=24.4) https://doi.org/10.1002/aenm.202402479
[36] R. Liang#, G. Yan#, Y. Geng, L. Hu, F. Liu, W. Ao, C. Zhang*, Compromise Design of Resonant Levels in GeTe‐Based Alloys with Enhanced Thermoelectric Performance. Advanced Functional Materials 2024, 2404021. (IF=19.0) https://doi.org/10.1002/adfm.202404021
[35] Y. Geng, Z. Li, Z. Lin, Y. Liu, Q. Lai, X. Wu, L. Hu, F. Liu, Y. Yu, C. Zhang*, Inhibiting Mg Diffusion and Evaporation by Forming Mg‐Rich Reservoir at Grain Boundaries Improves the Thermal Stability of N‐Type Mg3Sb2 Thermoelectrics. Small 2024, 20, 2305670. (IF=13.3) https://doi.org/10.1002/smll.202305670
2023年
[34] J. Song, Y. Ma, Q. Zhang, C. Zhang*, X. Wu*, Simultaneous Morphology and Band Structure Manipulation of BiOBr by Te Doping for Enhanced Photocatalytic Oxygen Evolution, ACS Applied Materials & Interfaces 2023,15(51), 59444-59453. (IF=9.5) https://doi.org/10.1021/acsami.3c13687
[33] C. Zhang, Q. Lai, W. Wang, X. Zhou, K. Lan, L. Hu, B. Cai, M. Wuttig, J. He*, F. Liu*, Y. Yu*, Gibbs Adsorption and Zener Pinning Enable Mechanically Robust High-Performance Bi2Te3-based Thermoelectric Devices. Advanced Science 2023, 10, 2302688. (IF=15.1) https://doi.org/10.1002/advs.202302688
[32] Y. Liu#, Y. Geng#, Y. Dou, X. Wu, L. Hu, F. Liu, W. Ao, C. Zhang*, Mg compensating design in the melting-sintering method for high-performance Mg3(Bi, Sb)2 thermoelectric devices. Small 2023, 19, 2303840. (IF=13.3) https://doi.org/10.1002/smll.202303840
[31] J. Shi#, X. Wu#, X. Geng#, L. Hu, F. Liu, W. Ao, C. Zhang*, Anisotropy engineering in solution-derived nanostructured Bi2Te3 thin films for high-performance flexible thermoelectric devices. Chemical Engineering Journal 2023, 458, 141450 (IF=16.744) https://doi.org/10.1016/j.cej.2023.141450
[30] C. Zhang*, G. Yan, Y. Wang, X. Wu, L. Hu, F. Liu, W. Ao, O. Cojocaru‐Mirédin, M. Wuttig, G. J. Snyder, Y. Yu*, Grain Boundary Complexions Enable a Simultaneous Optimization of Electron and Phonon Transport Leading to High‐Performance GeTe Thermoelectric Devices. Advanced Energy Materials 2023, 13, 2203361. (IF=29.698) https://doi.org/10.1002/aenm.202203361
2022年
[29] L. Wang#, S. Fang#, J. Li, L. Hu, F. Liu, W. Xu*, T. Mori*, C. Zhang*, Anomalous enhancement of thermoelectric performance in GeTe with specific interaxial angle and atomic displacement synergy. Cell Reports Physical Science 2022, 3 (9), 101009. (IF=7.832) https://doi.org/10.1016/j.xcrp.2022.101009
[28] C. Zhang*, Y. Dou, J. Chen, S. Fang, W. Xu*, X. Wu, L. Hu, F. Liu, Y. Li, J. Li*, Cubic-spinel AgIn5S8-based Thermoelectric Materials: Synthesis, Phonon Transport and Defect Chemistry. Materials Today Energy 2022, 27, 101029. (IF=9.257) https://doi.org/10.1016/j.mtener.2022.101029
[27] P. Li#, J. Shi#, X. Wu, J. Li, L. Hu, F. Liu, Y. Li, W. Ao, C. Zhang*, Interfacial engineering of solution-processed Bi2Te3-based thermoelectric nanocomposites via graphene addition and liquid-phase-sintering process. Chemical Engineering Journal 2022, 440, 135882. (IF=16.744) https://doi.org/10.1016/j.cej.2022.135882
[26] Y. Du, C. Zhang*, Y. Lu, J. Li, G. Cheng, J. Wang, G. Rao, Observation of table-like magnetocaloric effect and large refrigerant capacity in Nd6Fe13Pd1-xCux compounds. J. Rare Earth. 2022, 40 (4), 660-669. (IF=3.712)
2021年
[25] C. Zhang*, X. Geng, B. Chen, J. Li, A. Meledin, L. Hu, F. Liu, J. Shi, J. Mayer, M. Wuttig, O. Cojocaru‐Mirédin, Y. Yu*, Boron‐Mediated Grain Boundary Engineering Enables Simultaneous Improvement of Thermoelectric and Mechanical Properties in N‐Type Bi2Te3. Small 2021, 17, 2104067. (IF=15.153) https://onlinelibrary.wiley.com/doi/10.1002/smll.202104067
[24] G. Bai#, Y. Yu#, X. Wu, J. Li, Y. Xie, L. Hu, F. Liu, M. Wuttig, O. Cojocaru‐Mirédin, C. Zhang*, Boron Strengthened GeTe‐Based Alloys for Robust Thermoelectric Devices with High Output Power Density. Advanced Energy Materials 2021, 11, 2102012. (IF=29.698) https://onlinelibrary.wiley.com/doi/10.1002/aenm.202102012
[23] Y. Dou#, J. Li#, Y. Xie, X. Wu, L. Hu, F. Liu, W. Ao, Y. Liu, C. Zhang*, Lone-pair engineering: Achieving ultralow lattice thermal conductivity and enhanced thermoelectric performance in Al-doped GeTe-based alloys. Materials Today Physics 2021, 20, 100497. (IF=11.021) https://doi.org/10.1016/j.mtphys.2021.100497
[22] Y. S. Du, C. H. Zhang*, Y. M. Lu, L. Li, J. Q. Li, L. Ma, G. H. Rao*, Table-like magnetocaloric effect and large refrigerant capacity in Nd6Fe13Pd1-xAgx compounds. Intermetallics 2021, 130, 107062. (IF=3.398)
[21] L. Wang, J. Li, Y. Xie, L. Hu, F. Liu, W. Ao, J. Luo, C. Zhang*, Tailoring the chemical bonding of GeTe-based alloys by MgB2 alloying to simultaneously enhance their mechanical and thermoelectric performance. Materials Today Physics 2021, 16, 100308. (IF=11.021) https://doi.org/10.1016/j.mtphys.2020.100308
2020年
[20] J. Li, S. Zhao, J. Chen, G. Bai, L. Hu, F. Liu, W. Ao, Y. Li, H. Xie, C. Zhang*, Enhanced Interfacial Reliability and Mechanical Strength of CoSb3-Based Thermoelectric Joints with Rationally Designed Diffusion Barrier Materials of Ti-Based Alloys. ACS Appl. Mater. Interfaces 2020, 12, 44858-44865. (IF=9.229) https://pubs.acs.org/doi/10.1021/acsami.0c14180
[19] Y. Feng#, J. Li#, Y. Li#, T. Ding, C. Zhang, L. Hu, F. Liu, W. Ao & C. Zhang*. Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys. J. Mater. Chem. A 2020, 8, 11370-11380. (IF=12.732) https://pubs.rsc.org/en/content/articlelanding/2020/TA/D0TA02758H
[18] 张朝华*,王毅博,李均钦* & 刘福生. Phase and Defect Engineering of GeTe-based Alloys for High Thermoelectric Performance. 结构化学 2020, 39 (5), 821-830. (邀请综述)
[17] L. Wang#, J. Li#, C. Zhang, T. Ding, Y. Xie, Y. Li, F. Liu, W. Ao & C. Zhang*. Discovery of low-temperature GeTe-based thermoelectric alloys with high performance competing with Bi2Te3. J. Mater. Chem. A 2020, 8, 1660-1667. (IF=12.732) https://pubs.rsc.org/en/content/articlelanding/2020/TA/C9TA11901A
[16] P. Li#, T. Ding#, J. Li, C. Zhang, Y. Dou, Y. Li, L. Hu, F. Liu & C. Zhang*. Positive Effect of Ge Vacancies on Facilitating Band Convergence and Suppressing Bipolar Transport in GeTe‐Based Alloys for High Thermoelectric Performance. Advanced Functional Materials 2020, 30, 1910059. (IF=18.808) https://onlinelibrary.wiley.com/doi/10.1002/adfm.201910059
[15] J. Li, S. Zhao, J. Chen, C. Han, L. Hu, F. Liu, W. Ao, Y. Li, H. Xie & C. Zhang*. Al-Si Alloy as a Diffusion Barrier for GeTe-Based Thermoelectric Legs with High Interfacial Reliability and Mechanical Strength. ACS Appl. Mater. Interfaces 2020, 12, 18562-18569. (IF=9.229) https://pubs.acs.org/doi/10.1021/acsami.0c02028
2019年
[14] C. Zhang*, C. Zhang, H. Ng & Q. Xiong*. Solution-Processed n-type Bi2Te3−xSex Nanocomposites with Enhanced Thermoelectric Performance via Liquid-Phase Sintering. Sci. China Mater. 2019, 62, 389-398. (IF=6.098) https://link.springer.com/article/10.1007%2Fs40843-018-9312-5
[13] J.Q. Li#, C.X. Zhang#, Y.M. Feng, C.H. Zhang*, Y. Li*, L.P. Hu, W.Q. Ao & F.S. Liu. Effects on phase transition and thermoelectric properties in the Pb-doped GeTe-Bi2Te3 alloys with thermal annealing. J. Alloy. Compd. 2019, 808, 151747. (IF=4.175)
[12] J. Li, Y. Xie, C. Zhang, K. Ma, F. Liu, W. Ao, Y. Li & C. Zhang*. Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon Bi2Te3 Alloying. ACS Appl. Mater. Interfaces 2019, 11, 20064-20072. (IF=8.758) https://pubs.acs.org/doi/10.1021/acsami.9b04984
[11] B. Chen#, J. Li#, M. Wu, L. Hu, F. Liu, W. Ao, Y. Li, H. Xie & C. Zhang*. Simultaneous Enhancement of the Thermoelectric and Mechanical Performance in One-Step Sintered n-Type Bi2Te3-Based Alloys via a Facile MgB2 Doping Strategy. ACS Appl. Mater. Interfaces 2019, 11, 45746-45754. (IF=8.758) https://pubs.acs.org/doi/10.1021/acsami.9b16781
2018年
[10] C. Zhang, C. Wang, Y. Xie, B. Chen & C. Zhang*. Se-Sm co-doping strategy for tuning the structural and thermoelectric properties of GeTe-PbTe based alloys. Materials & Design 2018, 157, 394-401. (IF=5.77)
[9] J. Li, C. Zhang, J. Deng, F. Liu, W. Ao, Y. Li & C. Zhang*. Impact of Sm alloying and thermal annealing on the structural and thermoelectric properties of (GeTe)0.85(Pb1-xSmxTe)0.15 alloys. J. Alloy. Compd. 2018, 755, 184-191. (IF=4.175)
[8] B. Chen, X. Wang, J. Li, Q. Xiong & C. Zhang*. Synthesis, structure and nonlinear optical properties of solution-processed Bi2TeO5 nanocrystals. J. Mater. Chem. C 2018, 6, 10435-10440. (IF=6.641) https://pubs.rsc.org/en/content/articlelanding/2018/TC/C8TC04450C
Before SZU (2008-2017)
[7] C. Zhang, H. Ng, Z. Li, K.A. Khor & Q. Xiong*. Minority Carrier Blocking to Enhance the Thermoelectric Performance of Solution-Processed BixSb2-xTe3 Nanocomposites via a Liquid-Phase Sintering Process. ACS Appl. Mater. Interfaces 2017, 9, 12501-12510. (IF=8.097) https://pubs.acs.org/doi/10.1021/acsami.7b01473
[6] C. Zhang, M. de la Mata, Z. Li, F.J. Belarre, J. Arbiol, K.A. Khor, D. Poletti, B. Zhu, Q. Yan & Q. Xiong*. Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering. Nano Energy 2016, 30, 630-638. (IF=12.343) https://doi.org/10.1016/j.nanoen.2016.10.056
[5] C. Zhang, S. Zhao, C. Jin, A.L. Koh, Y. Zhou, W. Xu, Q. Li, Q. Xiong, H. Peng* & Z. Liu*. Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nature Communications 2015, 6, 6519. (IF=11.329) https://www.nature.com/articles/ncomms7519
[4] C. Zhang, Z. Peng*, Z. Li, L. Yu, K.A. Khor & Q. Xiong*. Controlled growth of bismuth antimony telluride BixSb2−xTe3 nanoplatelets and their bulk thermoelectric nanocomposites. Nano Energy 2015, 15, 688-696. (IF=11.553) https://doi.org/10.1016/j.nanoen.2015.05.022
[3] C. Zhang, L. Fu, S. Zhao, Y. Zhou, H. Peng* & Z. Liu*. Controllable co-segregation synthesis of wafer-scale hexagonal boron nitride thin films. Advanced Materials 2014, 26, 1776-1781. (IF=17.493) https://onlinelibrary.wiley.com/doi/10.1002/adma.201304301
[2] 张朝华,付磊,张艳峰&刘忠范*.石墨烯催化生长中的偏析现象及其调控方法. 化学学报 2013, 71, 308-322. (邀请综述)
[1] C. Zhang#, L. Fu#, N. Liu, M. Liu, Y. Wang & Z. Liu*. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Advanced Materials 2011, 23, 1020-1024. (IF=13.877), 高被引论文,727次 https://onlinelibrary.wiley.com/doi/10.1002/adma.201004110
项目清单:
1) 国家自然科学基金委员会, 青年科学基金项目, 21805196, 基于石墨烯复合和液相烧结法协同调控的N型碲化铋基热电材料研究, 2019.01-2021.12, 25.9万元。
2) 广东省自然科学基金, 广东省自然科学基金-博士启动纵向协同, 2018A030310416, 液相烧结法对碲化铋基纳米复合材料的热电性能优化及相关机理研究, 2018.01-2020.12,10万元。
3) 广东省自然科学基金, 面上项目, 2022A1515012492, III族元素掺杂碲化锗中的缺陷机制和热电性能研究, 2022.01-2024.12,10万元。
4) 深圳市科技创新委, 高等院校稳定支持计划, 20200731215211001, 基于相变调控的碲化锗基热电材料研究, 2021.01-2022.12, 21万元。
5) 广东省教育厅,普通高校青年创新人才项目,“石墨烯氧化物及其复合材料的制备与水处理应用研究”,5万。
6)深圳大学新引进教师科研启动项目,碲化铋基纳米复合材料热电性能研究(No.2017003),2017.06-2018.12,6万
7)深圳市孔雀计划科研启动经费,“低维纳米材料的生长调控与相关复合材料的热电应用研究,2019.01-2021.12,270万。
(1) 2024年,深圳大学“百篇优秀硕士学位论文”指导老师
(2) 2023年,深圳大学首届“百篇优秀硕士学位论文”指导老师
(3) 2022年,深圳大学2021年度“优秀硕士研究生导师”
(4) 2020年,深圳大学“荔园优青”
(5) 2020年,广东省珠江人才计划青年拔尖人才
深圳市南山区学苑大道1066号B2栋 邮编:518071
粤ICP备11018045号-7 版权所有:深圳大学材料学院
问题反馈邮箱:guoyanke@szu.edu.cn
扫描访问手机版