师资队伍

代表论著

发表于: 2020-04-20 17:43 点击:

代表论著(一作及通讯):


2024


[37] Y. Geng#, H. He#, R. Liang, Q. Lai, L. Hu, F. Liu, C. Zhang*, One‐Step‐Sintered GeTe‐Bi2Te3 Segmented Thermoelectric Legs with Robust Interface‐Connection Performance, Advanced Energy Materials 2024, 2402479. (IF=24.4) https://doi.org/10.1002/aenm.202402479

[36] R. Liang#, G. Yan#, Y. Geng, L. Hu, F. Liu, W. Ao, C. Zhang*, Compromise Design of Resonant Levels in GeTe‐Based Alloys with Enhanced Thermoelectric Performance. Advanced Functional Materials 2024, 2404021. (IF=19.0)  https://doi.org/10.1002/adfm.202404021

[35] Y. Geng, Z. Li, Z. Lin, Y. Liu, Q. Lai, X. Wu, L. Hu, F. Liu, Y. Yu, C. Zhang*, Inhibiting Mg Diffusion and Evaporation by Forming Mg‐Rich Reservoir at Grain Boundaries Improves the Thermal Stability of N‐Type Mg3Sb2 Thermoelectrics. Small 2024, 20, 2305670. (IF=13.3) https://doi.org/10.1002/smll.202305670

2023

[34] J. Song, Y. Ma, Q. Zhang, C. Zhang*, X. Wu*, Simultaneous Morphology and Band Structure Manipulation of BiOBr by Te Doping for Enhanced Photocatalytic Oxygen Evolution, ACS Applied Materials & Interfaces 2023,15(51), 59444-59453. (IF=9.5) https://doi.org/10.1021/acsami.3c13687

[33] C. Zhang, Q. Lai, W. Wang, X. Zhou, K. Lan, L. Hu, B. Cai, M. Wuttig, J. He*, F. Liu*, Y. Yu*, Gibbs Adsorption and Zener Pinning Enable Mechanically Robust High-Performance Bi2Te3-based Thermoelectric Devices. Advanced Science 2023, 10, 2302688. (IF=15.1) https://doi.org/10.1002/advs.202302688

[32] Y. Liu#, Y. Geng#, Y. Dou, X. Wu, L. Hu, F. Liu, W. Ao, C. Zhang*, Mg compensating design in the melting-sintering method for high-performance Mg3(Bi, Sb)2 thermoelectric devices. Small 2023, 19, 2303840. (IF=13.3)  https://doi.org/10.1002/smll.202303840

[31] J. Shi#, X. Wu#, X. Geng#, L. Hu, F. Liu, W. Ao, C. Zhang*, Anisotropy engineering in solution-derived nanostructured Bi2Te3 thin films for high-performance flexible thermoelectric devices. Chemical Engineering Journal 2023, 458, 141450 (IF=16.744) https://doi.org/10.1016/j.cej.2023.141450

[30] C. Zhang*, G. Yan, Y. Wang, X. Wu, L. Hu, F. Liu, W. Ao, O. Cojocaru‐Mirédin, M. Wuttig, G. J. Snyder, Y. Yu*, Grain Boundary Complexions Enable a Simultaneous Optimization of Electron and Phonon Transport Leading to High‐Performance GeTe Thermoelectric Devices. Advanced Energy Materials 2023, 13, 2203361. (IF=29.698) https://doi.org/10.1002/aenm.202203361

2022

[29] L. Wang#, S. Fang#, J. Li, L. Hu, F. Liu, W. Xu*, T. Mori*, C. Zhang*, Anomalous enhancement of thermoelectric performance in GeTe with specific interaxial angle and atomic displacement synergy. Cell Reports Physical Science 2022, 3 (9), 101009. (IF=7.832) https://doi.org/10.1016/j.xcrp.2022.101009

[28] C. Zhang*, Y. Dou, J. Chen, S. Fang, W. Xu*, X. Wu, L. Hu, F. Liu, Y. Li, J. Li*, Cubic-spinel AgIn5S8-based Thermoelectric Materials: Synthesis, Phonon Transport and Defect Chemistry. Materials Today Energy 2022, 27, 101029. (IF=9.257) https://doi.org/10.1016/j.mtener.2022.101029

[27] P. Li#, J. Shi#, X. Wu, J. Li, L. Hu, F. Liu, Y. Li, W. Ao, C. Zhang*, Interfacial engineering of solution-processed Bi2Te3-based thermoelectric nanocomposites via graphene addition and liquid-phase-sintering process. Chemical Engineering Journal 2022, 440, 135882. (IF=16.744) https://doi.org/10.1016/j.cej.2022.135882

[26] Y. Du, C. Zhang*, Y. Lu, J. Li, G. Cheng, J. Wang, G. Rao, Observation of table-like magnetocaloric effect and large refrigerant capacity in Nd6Fe13Pd1-xCux compounds. J. Rare Earth. 2022, 40 (4), 660-669. (IF=3.712)

2021

[25] C. Zhang*, X. Geng, B. Chen, J. Li, A. Meledin, L. Hu, F. Liu, J. Shi, J. Mayer, M. Wuttig, O. Cojocaru‐Mirédin, Y. Yu*, Boron‐Mediated Grain Boundary Engineering Enables Simultaneous Improvement of Thermoelectric and Mechanical Properties in N‐Type Bi2Te3. Small 2021, 17, 2104067. (IF=15.153)  https://onlinelibrary.wiley.com/doi/10.1002/smll.202104067

[24] G. Bai#, Y. Yu#, X. Wu, J. Li, Y. Xie, L. Hu, F. Liu, M. Wuttig, O. Cojocaru‐Mirédin, C. Zhang*, Boron Strengthened GeTe‐Based Alloys for Robust Thermoelectric Devices with High Output Power Density. Advanced Energy Materials 2021, 11, 2102012. (IF=29.698) https://onlinelibrary.wiley.com/doi/10.1002/aenm.202102012

[23] Y. Dou#, J. Li#, Y. Xie, X. Wu, L. Hu, F. Liu, W. Ao, Y. Liu, C. Zhang*, Lone-pair engineering: Achieving ultralow lattice thermal conductivity and enhanced thermoelectric performance in Al-doped GeTe-based alloys. Materials Today Physics 2021, 20, 100497. (IF=11.021) https://doi.org/10.1016/j.mtphys.2021.100497

[22] Y. S. Du, C. H. Zhang*, Y. M. Lu, L. Li, J. Q. Li, L. Ma, G. H. Rao*, Table-like magnetocaloric effect and large refrigerant capacity in Nd6Fe13Pd1-xAgx compounds. Intermetallics 2021, 130, 107062. (IF=3.398)

[21] L. Wang, J. Li, Y. Xie, L. Hu, F. Liu, W. Ao, J. Luo, C. Zhang*, Tailoring the chemical bonding of GeTe-based alloys by MgB2 alloying to simultaneously enhance their mechanical and thermoelectric performance. Materials Today Physics 2021, 16, 100308. (IF=11.021)  https://doi.org/10.1016/j.mtphys.2020.100308

2020

[20] J. Li, S. Zhao, J. Chen, G. Bai, L. Hu, F. Liu, W. Ao, Y. Li, H. Xie, C. Zhang*, Enhanced Interfacial Reliability and Mechanical Strength of CoSb3-Based Thermoelectric Joints with Rationally Designed Diffusion Barrier Materials of Ti-Based Alloys. ACS Appl. Mater. Interfaces 2020, 12, 44858-44865. (IF=9.229) https://pubs.acs.org/doi/10.1021/acsami.0c14180

[19] Y. Feng#, J. Li#, Y. Li#, T. Ding, C. Zhang, L. Hu, F. Liu, W. Ao & C. Zhang*. Band convergence and carrier-density fine-tuning as the electronic origin of high-average thermoelectric performance in Pb-doped GeTe-based alloys. J. Mater. Chem. A 2020, 8, 11370-11380. (IF=12.732) https://pubs.rsc.org/en/content/articlelanding/2020/TA/D0TA02758H

[18] 张朝华*,王毅博,李均钦* & 刘福生. Phase and Defect Engineering of GeTe-based Alloys for High Thermoelectric Performance. 结构化学 2020, 39 (5), 821-830. (邀请综述)

[17] L. Wang#, J. Li#, C. Zhang, T. Ding, Y. Xie, Y. Li, F. Liu, W. Ao & C. Zhang*. Discovery of low-temperature GeTe-based thermoelectric alloys with high performance competing with Bi2Te3. J. Mater. Chem. A 2020, 8, 1660-1667. (IF=12.732) https://pubs.rsc.org/en/content/articlelanding/2020/TA/C9TA11901A

[16] P. Li#, T. Ding#, J. Li, C. Zhang, Y. Dou, Y. Li, L. Hu, F. Liu & C. Zhang*. Positive Effect of Ge Vacancies on Facilitating Band Convergence and Suppressing Bipolar Transport in GeTe‐Based Alloys for High Thermoelectric Performance. Advanced Functional Materials 2020, 30, 1910059. (IF=18.808) https://onlinelibrary.wiley.com/doi/10.1002/adfm.201910059

[15] J. Li, S. Zhao, J. Chen, C. Han, L. Hu, F. Liu, W. Ao, Y. Li, H. Xie & C. Zhang*. Al-Si Alloy as a Diffusion Barrier for GeTe-Based Thermoelectric Legs with High Interfacial Reliability and Mechanical Strength. ACS Appl. Mater. Interfaces 2020, 12, 18562-18569. (IF=9.229) https://pubs.acs.org/doi/10.1021/acsami.0c02028

2019

[14] C. Zhang*, C. Zhang, H. Ng & Q. Xiong*. Solution-Processed n-type Bi2Te3xSex Nanocomposites with Enhanced Thermoelectric Performance via Liquid-Phase Sintering. Sci. China Mater. 2019, 62, 389-398. (IF=6.098) https://link.springer.com/article/10.1007%2Fs40843-018-9312-5

[13] J.Q. Li#, C.X. Zhang#, Y.M. Feng, C.H. Zhang*, Y. Li*, L.P. Hu, W.Q. Ao & F.S. Liu. Effects on phase transition and thermoelectric properties in the Pb-doped GeTe-Bi2Te3 alloys with thermal annealing. J. Alloy. Compd. 2019, 808, 151747. (IF=4.175)

[12] J. Li, Y. Xie, C. Zhang, K. Ma, F. Liu, W. Ao, Y. Li & C. Zhang*. Stacking Fault-Induced Minimized Lattice Thermal Conductivity in the High-Performance GeTe-Based Thermoelectric Materials upon Bi2Te3 Alloying. ACS Appl. Mater. Interfaces 2019, 11, 20064-20072. (IF=8.758) https://pubs.acs.org/doi/10.1021/acsami.9b04984

[11] B. Chen#, J. Li#, M. Wu, L. Hu, F. Liu, W. Ao, Y. Li, H. Xie & C. Zhang*. Simultaneous Enhancement of the Thermoelectric and Mechanical Performance in One-Step Sintered n-Type Bi2Te3-Based Alloys via a Facile MgB2 Doping Strategy. ACS Appl. Mater. Interfaces 2019, 11, 45746-45754. (IF=8.758) https://pubs.acs.org/doi/10.1021/acsami.9b16781

2018

[10] C. Zhang, C. Wang, Y. Xie, B. Chen & C. Zhang*. Se-Sm co-doping strategy for tuning the structural and thermoelectric properties of GeTe-PbTe based alloys. Materials & Design 2018, 157, 394-401. (IF=5.77)

[9] J. Li, C. Zhang, J. Deng, F. Liu, W. Ao, Y. Li & C. Zhang*. Impact of Sm alloying and thermal annealing on the structural and thermoelectric properties of (GeTe)0.85(Pb1-xSmxTe)0.15 alloys. J. Alloy. Compd. 2018, 755, 184-191. (IF=4.175)

[8] B. Chen, X. Wang, J. Li, Q. Xiong & C. Zhang*. Synthesis, structure and nonlinear optical properties of solution-processed Bi2TeO5 nanocrystals. J. Mater. Chem. C 2018, 6, 10435-10440. (IF=6.641)  https://pubs.rsc.org/en/content/articlelanding/2018/TC/C8TC04450C



Before SZU (2008-2017)

[7] C. Zhang, H. Ng, Z. Li, K.A. Khor & Q. Xiong*. Minority Carrier Blocking to Enhance the Thermoelectric Performance of Solution-Processed BixSb2-xTe3 Nanocomposites via a Liquid-Phase Sintering Process. ACS Appl. Mater. Interfaces 2017, 9, 12501-12510. (IF=8.097) https://pubs.acs.org/doi/10.1021/acsami.7b01473

[6] C. Zhang, M. de la Mata, Z. Li, F.J. Belarre, J. Arbiol, K.A. Khor, D. Poletti, B. Zhu, Q. Yan & Q. Xiong*. Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering. Nano Energy 2016, 30, 630-638. (IF=12.343) https://doi.org/10.1016/j.nanoen.2016.10.056

[5] C. Zhang, S. Zhao, C. Jin, A.L. Koh, Y. Zhou, W. Xu, Q. Li, Q. Xiong, H. Peng* & Z. Liu*. Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nature Communications 2015, 6, 6519. (IF=11.329) https://www.nature.com/articles/ncomms7519

[4] C. Zhang, Z. Peng*, Z. Li, L. Yu, K.A. Khor & Q. Xiong*. Controlled growth of bismuth antimony telluride BixSb2xTe3 nanoplatelets and their bulk thermoelectric nanocomposites. Nano Energy 2015, 15, 688-696. (IF=11.553) https://doi.org/10.1016/j.nanoen.2015.05.022

[3] C. Zhang, L. Fu, S. Zhao, Y. Zhou, H. Peng* & Z. Liu*. Controllable co-segregation synthesis of wafer-scale hexagonal boron nitride thin films. Advanced Materials 2014, 26, 1776-1781. (IF=17.493) https://onlinelibrary.wiley.com/doi/10.1002/adma.201304301

[2] 张朝华,付磊,张艳峰&刘忠范*.石墨烯催化生长中的偏析现象及其调控方法. 化学学报 2013, 71, 308-322. (邀请综述)

[1] C. Zhang#, L. Fu#, N. Liu, M. Liu, Y. Wang & Z. Liu*. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Advanced Materials 2011, 23, 1020-1024. (IF=13.877) 高被引论文,727次  https://onlinelibrary.wiley.com/doi/10.1002/adma.201004110



深圳市南山区学苑大道1066号B2栋 邮编:518071 电话:0755-86930097

粤ICP备11018045号-7 版权所有:深圳大学材料学院

问题反馈邮箱:guoyanke@szu.edu.cn

扫描访问手机版